Residual stresses in glasses
M. Ballauff, J. M. Brader, S. U. Egelhaaf, M. Fuchs, J. Horbach, N. Koumakis, M. Krüger, M. Laurati, K. J. Mutch, G. Petekidis, M. Siebenbürger, Th. Voigtmann, and J. Zausch
Accepted
The history dependence of glasses formed from flow-melted steady states by a sudden cessation of the shear rate $\dot\gamma$ is studied in colloidal suspensions, by molecular dynamics simulations, and by mode-coupling theory. In an ideal glass, stresses relax only partially, leaving behind a finite persistent residual stress. For intermediate times, relaxation curves scale as a function of $\dot\gamma t$, even though no flow is present. The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The theory describes this history dependence of glasses sharing the same thermodynamic state variables, but differing static properties.