Individual-ion addressing with microwave field gradients

Accepted

Individual-qubit addressing is a prerequisite for many instances of quantum information processing. We demonstrate this capability on trapped-ion qubits with microwave near-fields delivered by electrode structures integrated into a microfabricated surface-electrode trap. We describe four approaches that may be used in quantum information experiments with hyperfine levels as qubits. We implement individual control on two 25Mg+ ions separated by 4.3 mm and find spin-flip crosstalk errors on the order of 10-3.