Control of resonant interaction between electronic ground and excited states
Shinya Kato, Seiji Sugawa, Kosuke Shibata, Ryuta Yamamoto, and Yoshiro Takahashi
Accepted
We observe magnetic Feshbach resonances in a collision between the ground and metastable states of two-electron atoms of ytterbium (Yb). We measure the on-site interaction of doubly-occupied sites of an atomic Mott insulator state in a three-dimensional optical lattice as a collisional frequency shift in a high-resolution laser spectroscopy. The observed spectra are well fitted by a simple theoretical formula, in which two particles with an s-wave contact interaction are confined in a harmonic trap. This analysis reveals a wide variation of the interaction with a resonance behavior around a magnetic field of about 1.1 Gauss for the energetically lowest magnetic sublevel of 170Yb, as well as around 360 mG for the energetically highest magnetic sublevel of 174Yb. The observed Feshbach resonance can only be induced by an anisotropic interatomic interaction. This scheme will open the door to a variety of study using two-electron atoms with tunable interaction.